OptumG3

Verification of Mohr-Coulomb model in different soil tests

Soil tests

Date: Rev. Date

9 Aug 2019

Page

2

Table of content

1	Intro	oduction	3	
		Failure criterion		
	1.2	Elastic law	3	
	1.3	Biaxial test	3	
	1.4	Triaxial tests	3	
2	Biax	xial test	4	
3	Tria	Triaxial compression test		
4	Tria	Triaxial extension test		
5	Die	placements	10	

Date: : 9 Aug 2019

Rev. Date Page

3

1 Introduction

1.1 Failure criterion

The Mohr-Coulomb failure criterion is given by

$$F = \left| \sigma_1 - \sigma_3 \right| + (\sigma_1 + \sigma_3) \sin \phi - 2c \cos \phi = 0 \tag{1.1}$$

where c is the cohesion and ϕ is the friction angle. The principal stresses (positive in tension) are ordered as:

$$\sigma_1 \le \sigma_2 \le \sigma_3 \tag{1.2}$$

1.2 Elastic law

The Mohr-Coulomb model uses Hooke's law which is given in terms of principal stresses and strains by

$$\begin{pmatrix}
\varepsilon_1 \\
\varepsilon_2 \\
\varepsilon_3
\end{pmatrix} = \frac{1}{E} \begin{bmatrix}
1 & -\nu & -\nu \\
-\nu & 1 & -\nu \\
-\nu & -\nu & 1
\end{bmatrix} \begin{pmatrix}
\sigma_1 \\
\sigma_2 \\
\sigma_3
\end{pmatrix}$$
(1.3)

where E is Young's modulus and ν is Poisson's ratio.

1.3 Biaxial test

In biaxial compression, failure occurs when

$$\sigma_{1,f} = \sigma_3 \frac{1 + \sin\phi}{1 - \sin\phi} - 2c \frac{\cos\phi}{1 - \sin\phi} \tag{1.4}$$

1.4 Triaxial tests

In triaxial compression, failure occurs when

$$\sigma_{1,f} = \sigma_3 \frac{1 + \sin\phi}{1 - \sin\phi} - 2c \frac{\cos\phi}{1 - \sin\phi} \tag{1.5}$$

while, in extension, failure occurs when

$$\sigma_{3,f} = \sigma_1 \frac{1 - \sin \phi}{1 + \sin \phi} + 2c \frac{\cos \phi}{1 + \sin \phi} \tag{1.6}$$

In triaxial compression with $\,\sigma_1 < \sigma_2 = \sigma_3$, the strains below failure are given by

$$\varepsilon_1 = \frac{1}{E} \ \sigma_1 - 2\nu\sigma_3 \ , \ \varepsilon_2 = \varepsilon_3 = \frac{1}{E} \ (1 - \nu)\sigma_3 - \nu\sigma_1$$
 (1.7)

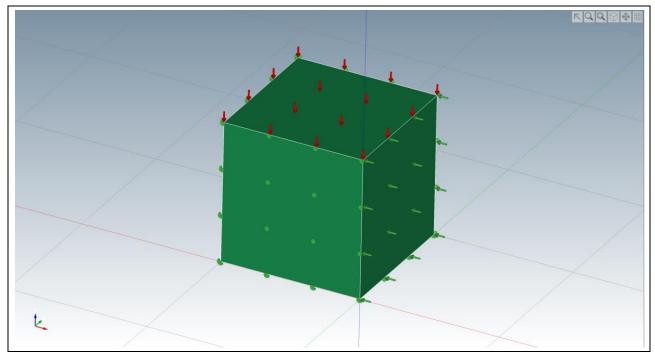
Soil tests Date:

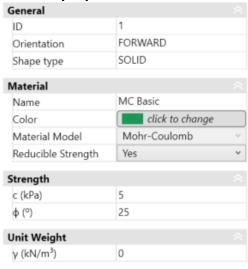
Rev. Date

9 Aug 2019

Page

Biaxial test 2




Figure 1: Biaxial test

Benchmark 262.088 **Results** 262.088 **Discrepancy** 0.00%

General description:

Cubic 5x5m specimen. Selected sides normally supported to reproduce plane strain conditions. A fixed load of -100 kPa is applied along with a multiplier load of -1kPa. Limit analysis is then used to determine the collapse multiplier.

Material properties:

Soil tests

Date: 9 Aug 2019
Rev. Date
Page : 5

Stage settings

Soil tests Optum^{CE}

Date: : 9 Aug 2019

Rev. Date Page

: : 6

3 Triaxial compression test

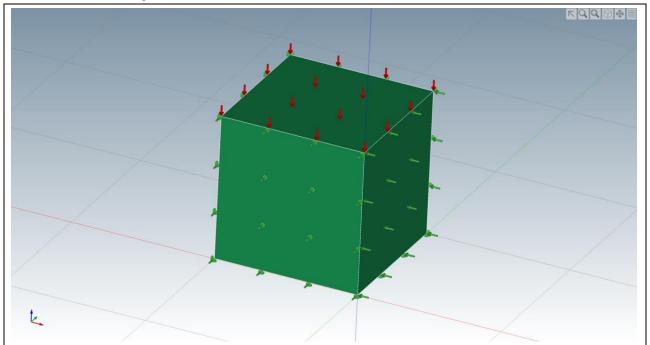
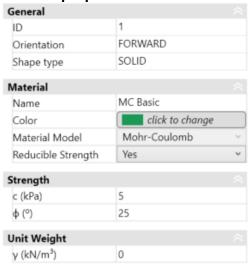


Figure 2: Triaxial compression test

 Benchmark
 262.088


 Result
 262.088

 Discrepancy
 0.00%

General description:

Cubic 5x5m specimen. Selected sides normally supported to reproduce triaxial conditions. Fixed load of -100 kPa are applied along with a multiplier load of -1kPa. Limit analysis is then used to determine the collapse multiplier.

Material properties:

Soil tests

Date: : 9 Aug 2019
Rev. Date :
Page : 7

Stage settings:

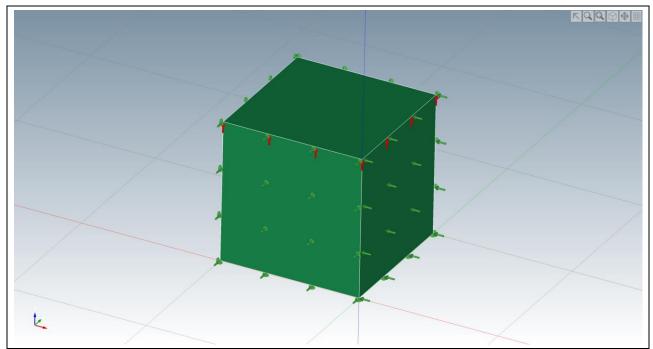
Soil tests Op+um^{CE}

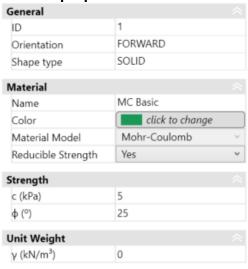
Date: : 9 Aug 2019

Rev. Date Page

8

4 Triaxial extension test




Figure 3: Triaxial extension test

Benchmark -34.215 Result -34.215 Discrepancy 0.00%

General description:

Cubic 5x5m specimen. Selected sides normally supported to reproduce triaxial conditions. Fixed load of -100 kPa are applied along with a multiplier load of 1kPa. Limit analysis is then used to determine the collapse multiplier.

Material properties:

Soil tests

Date: : 9 Aug 2019
Rev. Date :
Page : 9

Stage settings:

Soil tests

9 Aug 2019 Date:

Rev. Date

Page 10

Displacements

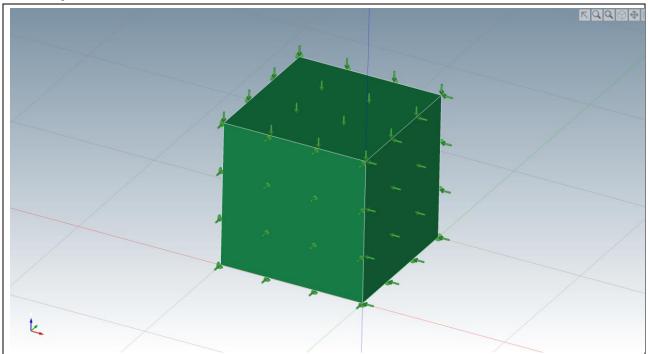


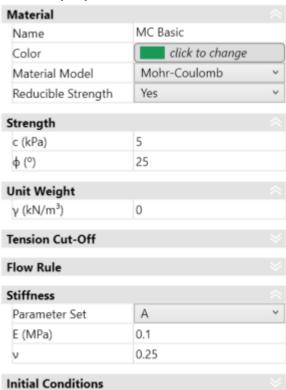
Figure 4: Triaxial compression test for elastic analysis

Results:

	Result	Benchmark	Discrepancy (%)
$arepsilon_1$	-1.5	-1.5	0.00%
ε_2	-0.25	-0.25	0.00%
ε_3	-0.25	-0.25	0.00%

General description:

Cubic 5x5m specimen. Selected sides normally supported to reproduce triaxial conditions. Fixed load of -100 kPa are applied horizontally along with a fixed load of -200 vertically. Elastic analysis is then used to determine the displacements.


Soil tests Op+um^{CE}

Date: Rev Date 9 Aug 2019

Rev. Date Page

; . : 11

Material properties:

Stage settings:

